skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hosein, Ian_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid and scalable production of high‐performance composites remains a key challenge in achieving sustainable manufacturing. Here, Exo‐press frontal polymerization (EPFP), a novel and transformative method for manufacturing fiber‐reinforced thermoset polymer composites, overcoming energy efficiency, scalability, and curing complex geometries, is introduced. Unlike conventional curing methods that require prolonged processing times and high energy, EPFP utilizes exothermic heat to reduce curing time from hours to minutes with minimal external energy. Combining exothermic heat with press molding, the novel EPFP enables the efficient fabrication of complex geometries, such as airfoil skin sections, with high fiber volume fractions (above 60%). In addition, EPFP is compatible with commercial off‐the‐shelf epoxy by integrating frontal resin, showcasing its versatility and adaptability for diverse industrial applications. Composites manufactured using EPFP exhibit superior thermomechanical properties while significantly reducing energy consumption by 80% and production costs by 40%. This makes it a sustainable and efficient solution for polymer composites manufacturing. 
    more » « less